MatchCake

matchcake.ml.optimizer_strategies package

Submodules

matchcake.ml.optimizer_strategies.adam_strategy module

class matchcake.ml.optimizer_strategies.adam_strategy.AdamStrategy

Bases: AdamWStrategy

NAME: str = 'Adam'
REQUIRES_GRAD = True
__init__()
set_parameters(parameters, **hyperparameters)

matchcake.ml.optimizer_strategies.adamw_strategy module

class matchcake.ml.optimizer_strategies.adamw_strategy.AdamWStrategy

Bases: OptimizerStrategy

NAME: str = 'AdamW'
REQUIRES_GRAD = True
REQUIRES_HYPERPARAMETERS = ['learning_rate', 'max_grad_norm']
__init__()
set_parameters(parameters, **hyperparameters)
step(closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None) TensorLike

matchcake.ml.optimizer_strategies.genetic_strategy module

class matchcake.ml.optimizer_strategies.genetic_strategy.GeneticStrategy

Bases: OptimizerStrategy

NAME: str = 'Genetic'
OPTIONAL_HYPERPARAMETERS = ['init_range_low', 'init_range_high', 'num_parents_mating', 'sol_per_pop', 'parent_selection_type', 'keep_parents', 'crossover_type', 'mutation_type', 'mutation_percent_genes']
__init__()
fitness_func(ga_instance, solution, solution_idx)
get_initial_population()
on_generation(ga_instance)
optimize(*, n_iterations: int, closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None, **hyperparameters) List[Parameter]
set_parameters(parameters, **hyperparameters)
step(closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None) TensorLike

matchcake.ml.optimizer_strategies.optimizer_strategy module

class matchcake.ml.optimizer_strategies.optimizer_strategy.OptimizerStrategy

Bases: ABC

NAME: str = 'OptimizerStrategy'
OPTIONAL_HYPERPARAMETERS = []
REQUIRES_GRAD = False
REQUIRES_HYPERPARAMETERS = []
__init__()
check_required_hyperparameters(hyperparameters)
jac(vector, closure)
optimize(*, n_iterations: int, closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None, **hyperparameters) List[Parameter]
property params_vector
set_optional_hyperparameters(hyperparameters, default=None)
set_parameters(parameters, **hyperparameters)
abstract step(closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None) TensorLike
vector_to_parameters(vector)
class matchcake.ml.optimizer_strategies.optimizer_strategy.ScipyOptimizerStrategy

Bases: OptimizerStrategy

NAME: str = 'ScipyOptimizerStrategy'
REQUIRES_HYPERPARAMETERS = []
get_callback_func(base_callback)
optimize(*, n_iterations: int, closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None, **hyperparameters) List[Parameter]
set_parameters(parameters, **hyperparameters)
step(closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None) TensorLike

matchcake.ml.optimizer_strategies.random_strategy module

class matchcake.ml.optimizer_strategies.random_strategy.RandomStrategy

Bases: OptimizerStrategy

NAME: str = 'Random'
REQUIRES_HYPERPARAMETERS = []
__init__()
set_parameters(parameters, **hyperparameters)
step(closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None) TensorLike

matchcake.ml.optimizer_strategies.scipy_strategies module

class matchcake.ml.optimizer_strategies.scipy_strategies.COBYLAStrategy

Bases: ScipyOptimizerStrategy

NAME: str = 'COBYLA'
class matchcake.ml.optimizer_strategies.scipy_strategies.L_BFGSStrategy

Bases: ScipyOptimizerStrategy

NAME: str = 'L-BFGS'
class matchcake.ml.optimizer_strategies.scipy_strategies.SLSQPStrategy

Bases: ScipyOptimizerStrategy

NAME: str = 'SLSQP'

matchcake.ml.optimizer_strategies.simulated_annealing_strategy module

class matchcake.ml.optimizer_strategies.simulated_annealing_strategy.SimulatedAnnealingStrategy

Bases: OptimizerStrategy

DEFAULT_TEMPERATURE = 10.0
NAME: str = 'SimulatedAnnealing'
OPTIONAL_HYPERPARAMETERS = ['seed', 'temperature']
REQUIRES_HYPERPARAMETERS = ['learning_rate']
__init__()
optimize(*, n_iterations: int, closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None, **hyperparameters) List[Parameter]
set_parameters(parameters, **hyperparameters)
step(closure: Callable[[List[Parameter] | None], TensorLike], callback: Callable[[], Any] | None = None) TensorLike

Module contents

matchcake.ml.optimizer_strategies.get_optimizer_strategy(name: str | OptimizerStrategy | None) OptimizerStrategy