MatchCake

Welcome to MatchCake’s documentation!

Modules:

MatchCake

Star on GitHub GitHub forks Python 3.6 downloads PyPI version License Tests Workflow Dist Workflow Doc Workflow Code style: black

Description

MatchCake is a Python package that provides a new PennyLane device for simulating a specific class of quantum circuits called Matchgate circuits or matchcircuits. These circuits are made with matchgates, a class of restricted quantum unitaries that are parity-preserving and operate on nearest-neighbor qubits. These constraints lead to matchgates being classically simulable in polynomial time.

Additionally, this package provides quantum kernels made with scikit-learn API allowing the use matchcircuits as kernels in quantum machine learning algorithms. One way to use these kernels could be in a Support Vector Machine (SVM). In the benchmark/classification folder, you can find some scripts that use SVM with matchcircuits as a kernel to classify the Iris dataset, the Breast Cancer dataset, and the Digits dataset in polynomial time with high accuracy.

Installation

Method

Commands

poetry

poetry add matchcake

PyPi

pip install MatchCake

source

pip install git+https://github.com/MatchCake/MatchCake

Last unstable version

To install the latest unstable version, download the latest version of the .whl file and follow the instructions above.

Quick Usage Preview

import matchcake as mc
import pennylane as qml
import numpy as np
from pennylane.ops.qubit.observables import BasisStateProjector

# Create a Non-Interacting Fermionic Device
nif_device = mc.NonInteractingFermionicDevice(wires=4)
initial_state = np.zeros(len(nif_device.wires), dtype=int)

# Define a quantum circuit
def circuit(params, wires, initial_state=None):
    qml.BasisState(initial_state, wires=wires)
    for i, even_wire in enumerate(wires[:-1:2]):
        idx = list(wires).index(even_wire)
        curr_wires = [wires[idx], wires[idx + 1]]
        mc.operations.fRXX(params, wires=curr_wires)
        mc.operations.fRYY(params, wires=curr_wires)
        mc.operations.fRZZ(params, wires=curr_wires)
    for i, odd_wire in enumerate(wires[1:-1:2]):
        idx = list(wires).index(odd_wire)
        mc.operations.fSWAP(wires=[wires[idx], wires[idx + 1]])
    projector: BasisStateProjector = qml.Projector(initial_state, wires=wires)
    return qml.expval(projector)

# Create a QNode
nif_qnode = qml.QNode(circuit, nif_device)
qml.draw_mpl(nif_qnode)(np.array([0.1, 0.2]), wires=nif_device.wires, initial_state=initial_state)

# Evaluate the QNode
expval = nif_qnode(np.random.random(2), wires=nif_device.wires, initial_state=initial_state)
print(f"Expectation value: {expval}")
from matchcake.ml.kernels import FermionicPQCKernel
from matchcake.ml.svm import FixedSizeSVC
from matchcake.ml.visualisation import ClassificationVisualizer
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

# Load the iris dataset
X, y = datasets.load_iris(return_X_y=True)
X = MinMaxScaler(feature_range=(0, 1)).fit_transform(X)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# Create and fit the model
model = FixedSizeSVC(kernel_cls=FermionicPQCKernel, kernel_kwargs=dict(size=4), random_state=0)
model.fit(x_train, y_train)

# Evaluate the model
test_accuracy = model.score(x_test, y_test)
print(f"Test accuracy: {test_accuracy * 100:.2f}%")

# Visualize the classification
viz = ClassificationVisualizer(x=X, n_pts=1_000)
viz.plot_2d_decision_boundaries(model=model, y=y, show=True)

Tutorials

Notes

  • This package is still in development and some features may not be available yet.

  • The documentation is still in development and may not be complete yet.

About

This work was supported by the Ministère de l’Économie, de l’Innovation et de l’Énergie du Québec through its Research Chair in Quantum Computing, an NSERC Discovery grant, and the Canada First Research Excellence Fund.

Found a bug or have a feature request?

License

Apache License 2.0

Citation

ArXiv paper:

@misc{gince2024fermionic,
      title={Fermionic Machine Learning},
      author={Jérémie Gince and Jean-Michel Pagé and Marco Armenta and Ayana Sarkar and Stefanos Kourtis},
      year={2024},
      eprint={2404.19032},
      archivePrefix={arXiv},
      primaryClass={quant-ph}
}

Repository:

@misc{matchcake_Gince2023,
  title={Fermionic Machine learning},
  author={Jérémie Gince},
  year={2023},
  publisher={Université de Sherbrooke},
  url={https://github.com/MatchCake/MatchCake},
}

Indices and tables