Welcome to MatchCake’s documentation!¶
Contents:
Modules:
- matchcake package
- Subpackages
- matchcake.base package
- matchcake.circuits package
- matchcake.constants package
- matchcake.devices package
- matchcake.matchgate_parameter_sets package
- Submodules
- matchcake.matchgate_parameter_sets.matchgate_composed_hamiltonian_params module
- matchcake.matchgate_parameter_sets.matchgate_hamiltonian_coefficients_params module
- matchcake.matchgate_parameter_sets.matchgate_params module
- matchcake.matchgate_parameter_sets.matchgate_polar_params module
- matchcake.matchgate_parameter_sets.matchgate_standard_hamiltonian_params module
- matchcake.matchgate_parameter_sets.matchgate_standard_params module
- matchcake.matchgate_parameter_sets.transfer_functions module
- Module contents
- matchcake.ml package
- matchcake.observables package
- matchcake.operations package
- Subpackages
- Submodules
- matchcake.operations.angle_embedding module
- matchcake.operations.fermionic_controlled_z module
- matchcake.operations.fermionic_hadamard module
- matchcake.operations.fermionic_paulis module
- matchcake.operations.fermionic_rotations module
- matchcake.operations.fermionic_superposition module
- matchcake.operations.fermionic_swap module
- matchcake.operations.matchgate_operation module
- matchcake.operations.rxx module
- matchcake.operations.rzz module
- Module contents
- matchcake.templates package
- matchcake.utils package
- Module contents
- Subpackages
MatchCake¶
Description¶
MatchCake is a Python package that provides a new PennyLane device for simulating a specific class of quantum circuits called Matchgate circuits or matchcircuits. These circuits are made with matchgates, a class of restricted quantum unitaries that are parity-preserving and operate on nearest-neighbor qubits. These constraints lead to matchgates being classically simulable in polynomial time.
Additionally, this package provides quantum kernels made with scikit-learn API allowing the use matchcircuits as kernels in quantum machine learning algorithms. One way to use these kernels could be in a Support Vector Machine (SVM). In the benchmark/classification folder, you can find some scripts that use SVM with matchcircuits as a kernel to classify the Iris dataset, the Breast Cancer dataset, and the Digits dataset in polynomial time with high accuracy.
Installation¶
Method |
Commands |
---|---|
poetry |
|
PyPi |
|
source |
|
Last unstable version¶
To install the latest unstable version, download the latest version of the .whl file and follow the instructions above.
Quick Usage Preview¶
import matchcake as mc
import pennylane as qml
import numpy as np
from pennylane.ops.qubit.observables import BasisStateProjector
# Create a Non-Interacting Fermionic Device
nif_device = mc.NonInteractingFermionicDevice(wires=4)
initial_state = np.zeros(len(nif_device.wires), dtype=int)
# Define a quantum circuit
def circuit(params, wires, initial_state=None):
qml.BasisState(initial_state, wires=wires)
for i, even_wire in enumerate(wires[:-1:2]):
idx = list(wires).index(even_wire)
curr_wires = [wires[idx], wires[idx + 1]]
mc.operations.fRXX(params, wires=curr_wires)
mc.operations.fRYY(params, wires=curr_wires)
mc.operations.fRZZ(params, wires=curr_wires)
for i, odd_wire in enumerate(wires[1:-1:2]):
idx = list(wires).index(odd_wire)
mc.operations.fSWAP(wires=[wires[idx], wires[idx + 1]])
projector: BasisStateProjector = qml.Projector(initial_state, wires=wires)
return qml.expval(projector)
# Create a QNode
nif_qnode = qml.QNode(circuit, nif_device)
qml.draw_mpl(nif_qnode)(np.array([0.1, 0.2]), wires=nif_device.wires, initial_state=initial_state)
# Evaluate the QNode
expval = nif_qnode(np.random.random(2), wires=nif_device.wires, initial_state=initial_state)
print(f"Expectation value: {expval}")
from matchcake.ml.kernels import FermionicPQCKernel
from matchcake.ml.svm import FixedSizeSVC
from matchcake.ml.visualisation import ClassificationVisualizer
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
# Load the iris dataset
X, y = datasets.load_iris(return_X_y=True)
X = MinMaxScaler(feature_range=(0, 1)).fit_transform(X)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Create and fit the model
model = FixedSizeSVC(kernel_cls=FermionicPQCKernel, kernel_kwargs=dict(size=4), random_state=0)
model.fit(x_train, y_train)
# Evaluate the model
test_accuracy = model.score(x_test, y_test)
print(f"Test accuracy: {test_accuracy * 100:.2f}%")
# Visualize the classification
viz = ClassificationVisualizer(x=X, n_pts=1_000)
viz.plot_2d_decision_boundaries(model=model, y=y, show=True)
Tutorials¶
Notes¶
This package is still in development and some features may not be available yet.
The documentation is still in development and may not be complete yet.
About¶
This work was supported by the Ministère de l’Économie, de l’Innovation et de l’Énergie du Québec through its Research Chair in Quantum Computing, an NSERC Discovery grant, and the Canada First Research Excellence Fund.
Important Links¶
Documentation at https://MatchCake.github.io/MatchCake/.
Github at https://github.com/MatchCake/MatchCake/.
Found a bug or have a feature request?¶
License¶
Citation¶
@misc{gince2024fermionic,
title={Fermionic Machine Learning},
author={Jérémie Gince and Jean-Michel Pagé and Marco Armenta and Ayana Sarkar and Stefanos Kourtis},
year={2024},
eprint={2404.19032},
archivePrefix={arXiv},
primaryClass={quant-ph}
}
Repository:
@misc{matchcake_Gince2023,
title={Fermionic Machine learning},
author={Jérémie Gince},
year={2023},
publisher={Université de Sherbrooke},
url={https://github.com/MatchCake/MatchCake},
}